Friday, August 14, 2020

NCERT Solutions for Class 10 Maths Unit 2


NCERT Solutions for Class 10 Maths Unit 2
Polynomials Class 10

Exercise 2.1
Q1 :
The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the
number of zeroes ofp(x), in each case.
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e1 1
vedantu class 10 maths Chapter 2 Polynomials e1 1b
Answer :
(i) The number of zeroes is 0 as the graph does not cut the x-axis at any point.
(ii) The number of zeroes is 1 as the graph intersects the x-axis at only 1 point.
(iii) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.
(iv) The number of zeroes is 2 as the graph intersects the x-axis at 2 points.
(v) The number of zeroes is 4 as the graph intersects the x-axis at 4 points.
(vi) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.


Exercise 2.2 
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and their coefficients:
(i) x2 – 2x – 8
(ii) 4s2 – 4s + 1
(iii) 6x2 – 3 – 7x
(iv) 4u2 + 8u
(v) t2 – 15
(vi) 3x2 – x – 4

Solution:
(i) x2 – 2x – 8 = x2 – 4x + 2x – 8
= x(x – 4) + 2(x – 4)
= (x + 2) (x – 4)
Either x + 2 = 0 or x – 4 = 0
⇒  x = -2 or x = 4
Hence, zeroes of this polynomial are -2 and 4.
Verification:
Sum of the zeroes = (-2) + (4) = 2
\frac { (-2) }{ 1 } = \frac { -b }{ a }
Product of zeroes = (-2) (4) = -8 =  \frac { -8 }{ 1 }=  \frac { c }{ a }
Hence verified.

(ii) 4s2 – 4s + 1 = (2s – l)2 = (2s – l)(2s – 1)
Either 2s – 1 = 0 or 2s – 1 = 0
i.e. , s =  \frac { 1 }{ 2 } , \frac { 1 }{ 2 }
Hence, the two Zeroes are \frac { 1 }{ 2 } and \frac { 1 }{ 2 }
Verification:
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e1 2
Hence verified.

(iii) 6x2 – 3 – 7x = 6x2 – 7x – 3
= 6x2 – 9x + 2x – 3
= 3x (2x – 3) + 1(2x – 3)
= (2x – 3) (3x + 1)
Either 2x – 3 = 0 or 3x+1 = 0
byjus class 10 maths Chapter 2 Polynomials e1 2a
Hence verified.

(iv) 4u2 + 8u  ⇒  4u(u + 2)
Either 4u = 0 or u + 2 = 0
⇒ u = 0 or u = -2
Hence, the two zeroes are 0 and -2.
Verification:
Sum of the zeroes = 0 + (-2) = -2
\frac { -8 }{ 4 } = \frac { -b }{ a }
Product of zeroes = 0 x (-2) = 0 =  \frac { c }{ a }
Hence verified.

(v) t2 – 15 = t2 – (\sqrt{15})2
= (t + (\sqrt{15}) (t- (\sqrt{15})
Either t + (\sqrt{15} = 0 or t – (\sqrt{15} = 0
⇒ t = -(\sqrt{15} or t = (\sqrt{15}
Hence, the two zeroes are -(\sqrt{15} and + \sqrt{15}.
Verification:
Sum of the zeroes = -(\sqrt{15} + \sqrt{15} = 0
\frac { -b }{ a }
Product of zeroes = –\sqrt{15} x \sqrt{15} = -15
\frac { c }{ a }
Hence verified.

(vi) 3x2 – x – 4 = 3x2 – 4x + 3x – 4
=  x(3x – 4) + l(3x 4)
= (x + 1) (3x – 4)
Either x + 1 = 0 or 3x-4 = 0
⇒  x = -1 or x =  \frac { 4 }{ 3 }
Verification:
Sum of the zeroes = -1 + \frac { 4 }{ 3 } =  \frac { 1 }{ 3 } =  \frac { -b }{ a }
Product of zeroes = -1 x \frac { 4 }{ 3 } =  \frac { -4 }{ 3 } =  \frac { c }{ a }
Hence verified.

Question 2.
Find a quadratic polynomial each with the given numbers as the sum and product of zeroes respectively:
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e2 2
Solution:
(i) Let the zeroes of polynomial be α and β.
Then, α + β = \frac { 1 }{ 4 } and αβ = -1
∴ Required polynomial is given by,
x2 – (α + β)x + αβ = x2 – \frac { 1 }{ 4 }x + (-1)
= x2 – \frac { 1 }{ 4 }x – 1
= 4x2 – x – 4

(ii) Let the zeroes of polynomial be α and β.
Then, α + β= √2 and αβ = \frac { 1 }{ 3 }
∴  Required polynomial is:
x2 – (α + β)x + αβ = x2 – √2x + \frac { 1 }{ 3 }
= 3x2 – 3√2x + 1

(iii) Let the zeroes of the polynomial be α and β.
Then, α + β = 0 and αβ = √5
∴ Required polynomial
= x2 – (α + β)x + αβ
= x2– 0 x x + √5 = x2 + √5

(iv) Let the zeroes of the polynomial be α and β.
Then, α + β = 1 and αβ = 1.
∴  Required polynomial
= x2 – (α + β)x + αβ
= x2 – x + 1

(v) Let the zeroes of the polynomial be α and β.
Then, α + β = – \frac { 1 }{ 4 } and αβ = \frac { 1 }{ 4 }
∴ Required polynomial
= x2 – (α + β)x + αβ
= x2 – (- \frac { 1 }{ 4 } ) + \frac { 1 }{ 4 }
=  4x2 + x + 1 = 0

(vi) Let the zeroes of the polynomial be α and β.
Then, α + β = 4 and αβ = 1.
∴ Required polynomial = x2 -(α + β)x + αβ
= x2 – 4x + 1


                   Exercise 2.3
Question 1.

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:
(i) p(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2
(ii) p(x) = x4 – 3x2 + 4x + 5, g(x) = x2 + 1 – x
(iii) p(x) = x4– 5x + 6, g(x) = 2 – x2
Solution:
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e3 1
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e3 1a

 Question 2.
Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial.
(i) t2 – 3, 2t4 + 3t3 – 2t2– 9t – 12
(ii) x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2
(iii) x2 + 3x + 1, x5 – 4x+ x2 + 3x + 1
Solution:
tiwari academy class 10 maths Chapter 2 Polynomials e3 2
∴  Remainder is 0, therefore, t2 – 3 is a factor of polynomial 2t4 + 3t3 – 2t2 -9t – 12.
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e3 2.
∴ Remainder is 0, therefore, x2 + 3x + 1 is a factor of polynomial 3x4 + 5x3 – 7x2 + 2x + 2.
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e3 2..
∴ Remainder = 2 ≠ 0, therefore, x3 – 3x + 1 is not a factor of polynomial x5 – 4x3 + x2+ 3x + 1.

 Question 3.
 Obtain all other zeroes of 3x4 + 6x3 – 2x2 – 10x – 5, if two of its zeroes are  and \sqrt { \frac { 5 }{ 3 } } and –\sqrt { \frac { 5 }{ 3 } }
Solution:
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e3 3
\frac { 1 }{ 3 } x (3x2– 5).Since both \frac { 1 }{ 3 } and(3x2– 5)are the factors, therefore 3x2 – 5 is a factor of the given polynomial.
Now, we divide the given polynomial by 3x2 – 5.
tiwari academy class 10 maths Chapter 2 Polynomials e3 3a
Hence, the other zeroes of the given polynomial are -1 and 1.

 Question 4.
On dividing x– 3x2 + x + 2bya polynomial g(x), the quotient and remainder were x – 2 and -2x + 4 respectively. Find g(x).
Solution:
x3 – 3x2 + x + 2  = g(x) x (x – 2) + (-2x + 4) [By division algorithm]
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e3 4

 Question 5.
Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and:
(i) deg p(x) = deg q(x)
(ii) deg q(x) = deg r(x)
(iii) deg r(x) = 0
Solution:
(i) p(x) = 2X2 + 2x + 8,
q(x) = x2 + x + 4,
g(x) = 2 and r(x) = 0

(ii) p(x) = x3 + x2 + x + 1,
q(x) = x + 1,
g(x) = x2 – 1 and r(x) = 2x + 2

(iii) p(x) = x3 – x2 + 2x + 3,
g(x) = x2 + 2,
q(x) = x – 1 and r(x) = 5

                                      Exercise 2.4

 Question 1.
Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also, verify the relationship between the zeroes and the coefficients in each case:
(i) 2x3 + x2 – 5x + 2;  \frac { 1 }{ 4 }, 1, -2
(ii) x3 – 4x2 + 5x – 2; 2, 1, 1
Solution:
(i) Comparing the given polynomial with ax3 + bx2 + cx + d, we get:
a = 2, b – 1, c = -5 and d = 2.
∴  p(x) = 2x3 + x2 – 5x + 2
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e4 1
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e4 1a
(ii) Compearing the given polynomial with ax3 + bx2 + cx + d, we get:
a = 1, b = -4, c = 5 and d = – 2.
∴ p (x) = x3 – 4x2 + 5x – 2
⇒  p(2) = (2)3 – 4(2)2 + 5 x 2 – 2
= 8 – 16+ 10 – 2 = 0
p(1) = (1)3 – 4(1)2 + 5 x 1-2
= 1 – 4 + 1 – 2
= 6-6 = 0
Hence, 2, 1 and 1 are the zeroes of x3 – 4x+ 5x – 2.
Hence verified.
Now we take α = 2, β = 1 and γ = 1.
α + β + γ = 2 + 1 + 1 = \frac { 4 }{ 1 } = \frac { -b }{ a }
αβ + βγ + γα = 2 + 1 + 2 = \frac { 5 }{ 1 } = \frac { c }{ a }
αβγ = 2 x 1 x 1  = \frac { 2 }{ 1 } = \frac { -d }{ a }.
Hence verified.

Question 2.
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.
Solution:
Let α , β and  γ be the zeroes of the required polynomial.
Then α + β + γ = 2, αβ + βγ + γα = -7 and αβγ = -14.
∴ Cubic polynomial
= x3 – (α + β + γ)x2 + (αβ + βγ + γα)x – αβγ
= x3 – 2x2 – 1x + 14
Hence, the required cubic polynomial is x3 – 2x2 – 7x + 14.

Question 3.
If the zeroes of the polynomial x3 – 3x2 + x + 1 are a-b, a, a + b, find a and b.
Solution:
Let α , β and  γ be the zeroes of polynomial x3 – 3x2 + x + 1.
Then α =  a-b, β = a and γ = a + b.
∴ Sum of zeroes = α + β + γ
⇒   3 = (a – b) + a + (a + b)
⇒  (a – b) + a + (a + b) = 3
⇒  a-b + a + a + b = 3
⇒       3a = 3
⇒ a =  \frac { 3 }{ 3 } = 1 …(i)
Product of zeroes = αβγ
⇒ -1 = (a – b) a (a + b)
⇒ (a – b) a (a + b) = -1
⇒   (a2 – b2)a = -1
⇒  a3 – ab2 = -1   … (ii)
Putting the value of a from equation (i) in equation (ii), we get:
(1)3-(1)b2 = -1
⇒ 1 – b2 = -1
⇒ – b2 = -1 – 1
⇒  b2 = 2
⇒ b = ±√2
Hence, a = 1 and b = ±√2.

 Question 4.
If two zeroes of the polynomial x4 – 6x3 – 26x+ 138x – 35 are 2 ± √3, finnd other zeroes.
Solution:
Since two zeroes are 2 + √3 and 2 – √3,
∴  [x-(2 + √3)] [x- (2 – √3)]
= (x-2- √3)(x-2 + √3)
= (x-2)2– (√3)2
x2 – 4x + 1 is a factor of the given polynomial.
Now, we divide the given polynomial by x2 – 4x + 1.
study rankers class 10 maths Chapter 2 Polynomials e4 4
So, x4 – 6x3 – 26x2 + 138x – 35
= (x2 – 4x + 1) (x2 – 2x – 35)
= (x2 – 4x + 1) (x2 – 7x + 5x – 35)
= (x2-4x + 1) [x(x- 7) + 5 (x-7)]
= (x2 – 4x + 1) (x – 7) (x + 5)
Hence, the other zeroes of the given polynomial are 7 and -5.

Question 5.
If the polynomial x4 – 6x3 + 16x2 – 25x + 10 is divided by another polynomial x2 – 2x + k, the remainder comes out to be x + a, find k and a.
Solution:
We have
p(x) = x4 – 6x3 + 16x2 – 25x + 10
Remainder = x + a   … (i)
Now, we divide the given polynomial 6x3 + 16x2 – 25x + 10 by x2 – 2x + k.
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials e4 5
Using equation (i), we get:
(-9 + 2k)x + 10-8 k + k2 = x + a
On comparing the like coefficients, we have:
-9 + 2k = 1
⇒ 2k = 10
⇒ k = \frac { 10 }{ 2 } = 5  ….(ii)
and 10 -8k + k2– a   ….(iii)
Substituting the value of k = 5, we get:
10 – 8(5) + (5)2 = a
⇒   10 – 40 + 25 = a
⇒  35 – 40 =   a
⇒   a =   -5
Hence, k = 5 and a = -5.

1 comments:

  1. Very well explained and told, a lot of information was received under your blog, thank you for giving so much valuable information!!
    The updated NCERT Solutions for Class 10 Maths have been prepared according to NCERT, which you can easily get without any problem.

    ReplyDelete

THANK YOU