CBSE

“Aim for success, not perfection. Never give up your right to be wrong, because then you will lose the ability to learn new things and move forward with your life. Remember that fear always lurks behind perfectionism.”

MP BOARD

“Be miserable. Or motivate yourself. Whatever has to be done, it's always your choice.”

ENTRANCE EXAMINATION

prepratio for SAINIK SCHOOL,MILITRY SCHOOL,Jawahar Navodaya Vidyalaya,Central Hindu School

CURRENT AFFAIRS

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

Sunday, August 16, 2020

Class 10 Maths Chapter 2 – Polynomials

 Class 10 Maths Chapter 2 – Polynomials

Exercise 2.1 Page: 28

1. The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

Ncert solutions class 10 chapter 2-1

Solutions:

Graphical method to find zeroes:-

Total number of zeroes in any polynomial equation = total number of times the curve intersects x-axis.

(i) In the given graph, the number of zeroes of p(x) is 0 because the graph is parallel to x-axis does not cut it at any point.

(ii) In the given graph, the number of zeroes of p(x) is 1 because the graph intersects the x-axis at only one point.

(iii) In the given graph, the number of zeroes of p(x) is 3 because the graph intersects the x-axis at any three points.

(iv) In the given graph, the number of zeroes of p(x) is 2 because the graph intersects the x-axis at two points.

(v) In the given graph, the number of zeroes of p(x) is 4 because the graph intersects the x-axis at four points.

(vi) In the given graph, the number of zeroes of p(x) is 3 because the graph intersects the x-axis at three points.


Exercise 2.2 Page: 33

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Solutions:

(i) x2–2x –8

x2– 4x+2x–8 = x(x–4)+2(x–4) = (x-4)(x+2)

Therefore, zeroes of polynomial equation x2–2x–8 are (4, -2)

Sum of zeroes = 4–2 = 2 = -(-2)/1 = -(Coefficient of x)/(Coefficient of x2)

Product of zeroes = 4×(-2) = -8 =-(8)/1 = (Constant term)/(Coefficient of x2)

(ii) 4s2–4s+1

⇒4s2–2s–2s+1 = 2s(2s–1)–1(2s-1) = (2s–1)(2s–1)

Therefore, zeroes of polynomial equation 4s2–4s+1 are (1/2, 1/2)

Sum of zeroes = (½)+(1/2) = 1 = -4/4 = -(Coefficient of s)/(Coefficient of s2)

Product of zeros = (1/2)×(1/2) = 1/4 = (Constant term)/(Coefficient of s)

(iii) 6x2–3–7x

⇒6x2–7x–3 = 6x– 9x + 2x – 3 = 3x(2x – 3) +1(2x – 3) = (3x+1)(2x-3)

Therefore, zeroes of polynomial equation 6x2–3–7x are (-1/3, 3/2)

Sum of zeroes = -(1/3)+(3/2) = (7/6) = -(Coefficient of x)/(Coefficient of x2)

Product of zeroes = -(1/3)×(3/2) = -(3/6) = (Constant term) /(Coefficient of x)

(iv) 4u2+8u

⇒ 4u(u+2)

Therefore, zeroes of polynomial equation 4u2 + 8u are (0, -2).

Sum of zeroes = 0+(-2) = -2 = -(8/4) = = -(Coefficient of u)/(Coefficient of u2)

Product of zeroes = 0×-2 = 0 = 0/4 = (Constant term)/(Coefficient of u)

(v) t2–15

⇒ t2 = 15 or t = ±√15

Therefore, zeroes of polynomial equation t2 –15 are (√15, -√15)

Sum of zeroes =√15+(-√15) = 0= -(0/1)= -(Coefficient of t) / (Coefficient of t2)

Product of zeroes = √15×(-√15) = -15 = -15/1 = (Constant term) / (Coefficient of t)

(vi) 3x2–x–4

⇒ 3x2–4x+3x–4 = x(3x-4)+1(3x-4) = (3x – 4)(x + 1)

Therefore, zeroes of polynomial equation3x2 – x – 4 are (4/3, -1)

Sum of zeroes = (4/3)+(-1) = (1/3)= -(-1/3) = -(Coefficient of x) / (Coefficient of x2)

Product of zeroes=(4/3)×(-1) = (-4/3) = (Constant term) /(Coefficient of x)

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) 1/4 , -1

Solution:

From the formulas of sum and product of zeroes, we know,

Sum of zeroes = α+β

Product of zeroes = α β

Sum of zeroes = α+β = 1/4

Product of zeroes = α β = -1

∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

x2–(α+β)x +αβ = 0

x2–(1/4)x +(-1) = 0

4x2–x-4 = 0

Thus,4x2–x–4 is the quadratic polynomial.

(ii)√2, 1/3

Solution:

Sum of zeroes = α + β =√2

Product of zeroes = α β = 1/3

∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

x2–(α+β)x +αβ = 0

x2 –(√2)x + (1/3) = 0

3x2-3√2x+1 = 0

Thus, 3x2-3√2x+1 is the quadratic polynomial.

(iii) 0, √5

Solution:

Given,

Sum of zeroes = α+β = 0

Product of zeroes = α β = √5

∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly

as:-

x2–(α+β)x +αβ = 0

x2–(0)x +√5= 0

Thus, x2+√5 is the quadratic polynomial.

(iv) 1, 1

Solution:

Given,

Sum of zeroes = α+β = 1

Product of zeroes = α β = 1

∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

x2–(α+β)x +αβ = 0

x2–x+1 = 0

Thus , x2–x+1is the quadratic polynomial.

(v) -1/4, 1/4

Solution:

Given,

Sum of zeroes = α+β = -1/4

Product of zeroes = α β = 1/4

∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

x2–(α+β)x +αβ = 0

x2–(-1/4)x +(1/4) = 0

4x2+x+1 = 0

Thus,4x2+x+1 is the quadratic polynomial.

(vi) 4, 1

Solution:

Given,

Sum of zeroes = α+β =

Product of zeroes = αβ = 1

∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

x2–(α+β)x+αβ = 0

x2–4x+1 = 0

Thus, x2–4x+1 is the quadratic polynomial.


Exercise 2.3 Page: 36

1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i) p(x) = x3-3x2+5x–3 , g(x) = x2–2

Solution:

Given,

Dividend = p(x) = x3-3x2+5x–3

Divisor = g(x) = x2– 2

Ncert solutions class 10 chapter 2-2

Therefore, upon division we get,

Quotient = x–3

Remainder = 7x–9

(ii) p(x) = x4-3x2+4x+5 , g(x) = x2+1-x

Solution:

Given,

Dividend = p(x) = x– 3x+ 4x +5

Divisor = g(x) = x2 +1-x

Ncert solutions class 10 chapter 2-3

Therefore, upon division we get,

Quotient = x+ x–3

Remainder = 8

(iii) p(x) =x4–5x+6, g(x) = 2–x2

Solution:

Given,

Dividend = p(x) =x4 – 5x + 6 = x+0x2–5x+6

Divisor = g(x) = 2–x2 = –x2+2

Ncert solutions class 10 chapter 2-4

Therefore, upon division we get,

Quotient = -x2-2

Remainder = -5x + 10

2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i) t2-3, 2t+3t3-2t2-9t-12

Solutions:

Given,

First polynomial = t2-3

Second polynomial = 2t+3t3-2t-9t-12

Ncert solutions class 10 chapter 2-5

As we can see, the remainder is left as 0. Therefore, we say that, t2-3 is a factor of 2t2+3t+4.

(ii)x2+3x+1 , 3x4+5x3-7x2+2x+2

Solutions:

Given,

First polynomial = x2+3x+1

Second polynomial = 3x4+5x3-7x2+2x+2

Ncert solutions class 10 chapter 2-6

As we can see, the remainder is left as 0. Therefore, we say that, x2 + 3x + 1 is a factor of 3x4+5x3-7x2+2x+2.

(iii) x3-3x+1, x5-4x3+x2+3x+1

Solutions:

Given,

First polynomial = x3-3x+1

Second polynomial = x5-4x3+x2+3x+1

Ncert solutions class 10 chapter 2-7

As we can see, the remainder is not equal to 0. Therefore, we say that, x3-3x+1 is not a factor of x5-4x3+x2+3x+1 .

3. Obtain all other zeroes of 3x4+6x3-2x2-10x-5, if two of its zeroes are √(5/3) and – √(5/3).

Solutions:

Since this is a polynomial equation of degree 4, hence there will be total 4 roots.

√(5/3) and – √(5/3) are zeroes of polynomial f(x).

∴ (x –√(5/3)) (x+√(5/3) = x2-(5/3) = 0

(3x2−5)=0, is a factor of given polynomial f(x).

Now, when we will divide f(x) by (3x2−5) the quotient obtained will also be a factor of f(x) and the remainder will be 0.

Ncert solutions class 10 chapter 2-8

Therefore, 3x+6x−2x−10x–5 = (3x–5)(x2+2x+1)

Now, on further factorizing (x2+2x+1) we get,

x2+2x+1 = x2+x+x+1 = 0

x(x+1)+1(x+1) = 0

(x+1)(x+1) = 0

So, its zeroes are given by: x= −1 and x = −1.

Therefore, all four zeroes of given polynomial equation are:

√(5/3),- √(5/3) , −1 and −1.

Hence, is the answer.

4. On dividing x3-3x2+x+2 by a polynomial g(x), the quotient and remainder were x–2 and –2x+4, respectively. Find g(x).

Solution:

Given,

Dividend, p(x) = x3-3x2+x+2

Quotient = x-2

Remainder = –2x+4

We have to find the value of Divisor, g(x) =?

As we know,

Dividend = Divisor × Quotient + Remainder

∴ x3-3x2+x+2 = g(x)×(x-2) + (-2x+4)

x3-3x2+x+2-(-2x+4) = g(x)×(x-2)

Therefore, g(x) × (x-2) = x3-3x2+x+2

Now, for finding g(x) we will divide x3-3x2+x+2 with (x-2)

Ncert solutions class 10 chapter 2-9

Therefore, g(x) = (x2–x+1)

5. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

(i) deg p(x) = deg q(x)

(ii) deg q(x) = deg r(x)

(iii) deg r(x) = 0

Solutions:

According to the division algorithm, dividend p(x) and divisor g(x) are two polynomials, where g(x)≠0. Then we can find the value of quotient q(x) and remainder r(x), with the help of below given formula;

Dividend = Divisor × Quotient + Remainder

∴ p(x) = g(x)×q(x)+r(x)

Where r(x) = 0 or degree of r(x)< degree of g(x).

Now let us proof the three given cases as per division algorithm by taking examples for each.

(i) deg p(x) = deg q(x)

Degree of dividend is equal to degree of quotient, only when the divisor is a constant term.

Let us take an example, 3x2+3x+3 is a polynomial to be divided by 3.

So, (3x2+3x+3)/3 = x2+x+1 = q(x)

Thus, you can see, the degree of quotient is equal to the degree of dividend.

Hence, division algorithm is satisfied here.

(ii) deg q(x) = deg r(x)

Let us take an example , p(x)=x2+x is a polynomial to be divided by g(x)=x.

So, (x2+x)/x = x+1 = q(x)

Also, remainder, r(x) = 0

Thus, you can see, the degree of quotient is equal to the degree of remainder.

Hence, division algorithm is satisfied here.

(iii) deg r(x) = 0

The degree of remainder is 0 only when the remainder left after division algorithm is constant.

Let us take an example, p(x) = x2+1 is a polynomial to be divided by g(x)=x.

So,( x2+1)/x= x=q(x)

And r(x)=1

Clearly, the degree of remainder here is 0.

Hence, division algorithm is satisfied here.


Exercise 2.4 Page: 36

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i) 2x3+x2-5x+2; -1/2, 1, -2

Solution:

Given, p(x) 2x3+x2-5x+2

And zeroes for p(x) are = 1/2, 1, -2

 

∴ p(1/2) = 2(1/2)3+(1/2)2-5(1/2)+2 = (1/4)+(1/4)-(5/2)+2 = 0

p(1) = 2(1)3+(1)2-5(1)+2 = 0

p(-2) = 2(-2)3+(-2)2-5(-2)+2 = 0

Hence, proved 1/2, 1, -2 are the zeroes of 2x3+x2-5x+2.

Now, comparing the given polynomial with general expression, we get;

∴ ax3+bx2+cx+d = 2x3+x2-5x+2

a=2, b=1, c= -5 and d = 2

As we know, if α, β, γ are the zeroes of the cubic polynomial ax3+bx2+cx+d , then;

α +β+γ = –b/a

αβ+βγ+γα = c/a

α βγ = – d/a.

Therefore, putting the values of zeroes of the polynomial,

α+β+γ = ½+1+(-2) = -1/2 = –b/a

αβ+βγ+γα = (1/2×1)+(1 ×-2)+(-2×1/2) = -5/2 = c/a

α β γ = ½×1×(-2) = -2/2 = -d/a

Hence, the relationship between the zeroes and the coefficients are satisfied.

(ii) x3-4x2+5x-2 ;2, 1, 1

Solution:

Given, p(x) = x3-4x2+5x-2

And zeroes for p(x) are 2,1,1.

∴ p(2)= 23-4(2)2+5(2)-2 = 0

p(1) = 13-(4×1)+(5×1)-2 = 0

Hence proved, 2, 1, 1 are the zeroes of x3-4x2+5x-2

Now, comparing the given polynomial with general expression, we get;

∴ ax3+bx2+cx+d = x3-4x2+5x-2

a = 1, b = -4, c = 5 and d = -2

As we know, if α, β, γ are the zeroes of the cubic polynomial ax3+bx2+cx+d , then;

α + β + γ = –b/a

αβ + βγ + γα = c/a

α β γ = – d/a.

Therefore, putting the values of zeroes of the polynomial,

α +β+γ = 2+1+1 = 4 = -(-4)/1 = –b/a

αβ+βγ+γα = 2×1+1×1+1×2 = 5 = 5/1= c/a

αβγ = 2×1×1 = 2 = -(-2)/1 = -d/a

Hence, the relationship between the zeroes and the coefficients are satisfied.

2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, –7, –14 respectively.

Solution:

Let us consider the cubic polynomial is ax3+bx2+cx+d and the values of the zeroes of the polynomials be α, β, γ.

As per the given question,

α+β+γ = -b/a = 2/1

αβ +βγ+γα = c/a = -7/1

α βγ = -d/a = -14/1

Thus, from above three expressions we get the values of coefficient of polynomial.

a = 1, b = -2, c = -7, d = 14

Hence, the cubic polynomial is x3-2x2-7x+14

3. If the zeroes of the polynomial x3-3x2+x+1 are a – b, a, a + b, find a and b.

Solution:

We are given with the polynomial here,

p(x) = x3-3x2+x+1

And zeroes are given as a – b, a, a + b

Now, comparing the given polynomial with general expression, we get;

∴px3+qx2+rx+s = x3-3x2+x+1

p = 1, q = -3, r = 1 and s = 1

Sum of zeroes = a – b + a + a + b

-q/p = 3a

Putting the values q and p.

-(-3)/1 = 3a

a=1

Thus, the zeroes are 1-b, 1, 1+b.

Now, product of zeroes = 1(1-b)(1+b)

-s/p = 1-b2

-1/1 = 1-b2

b2 = 1+1 = 2

b = √2

Hence,1-√2, 1 ,1+√2 are the zeroes of x3-3x2+x+1.

4. If two zeroes of the polynomial x4-6x3-26x2+138x-35 are 2 ±3, find other zeroes.

Solution:

Since this is a polynomial equation of degree 4, hence there will be total 4 roots.

Let f(x) = x4-6x3-26x2+138x-35

Since 2 +√and 2-√are zeroes of given polynomial f(x).

∴ [x−(2+√3)] [x−(2-√3)] = 0

(x−2−√3)(x−2+√3) = 0

On multiplying the above equation we get,

x2-4x+1, this is a factor of a given polynomial f(x).

Now, if we will divide f(x) by g(x), the quotient will also be a factor of f(x) and the remainder will be 0.

Ncert solutions class 10 chapter 2-10

So, x4-6x3-26x2+138x-35 = (x2-4x+1)(x2 –2x−35)

Now, on further factorizing (x2–2x−35) we get,

x2–(7−5)x −35 = x2– 7x+5x+35 = 0

x(x −7)+5(x−7) = 0

(x+5)(x−7) = 0

So, its zeroes are given by:

x= −5 and x = 7.

Therefore, all four zeroes of given polynomial equation are: 2+√3 , 2-√3−5 and 7.

Maths NCERT class 9 Chapter 2 – Polynomials

 Maths NCERT class 9 Chapter 2 – Polynomials

Exercise 2.1 Page: 32

1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i) 4x2–3x+7

Solution:

The equation 4x2–3x+7 can be written as 4x2–3x1+7x0

Since x is the only variable in the given equation and the powers of x (i.e., 2, 1 and 0) are whole numbers, we can say that the expression 4x2–3x+7 is a polynomial in one variable.

(ii) y2+√2

Solution:

The equation y2+√2 can be written as y2+2y0

Since y is the only variable in the given equation and the powers of y (i.e., 2 and 0) are whole numbers, we can say that the expression y2+2 is a polynomial in one variable.

(iii) 3√t+t√2

Solution:

The equation 3√t+t√2 can be written as 3t1/2+√2t

Though, t is the only variable in the given equation, the powers of t (i.e.,1/2) is not a whole number. Hence, we can say that the expression 3√t+t√2 is not a polynomial in one variable.

(iv) y+2/y

Solution:

The equation y+2/y an be written as y+2y-1

Though, is the only variable in the given equation, the powers of y (i.e.,-1) is not a whole number. Hence, we can say that the expression y+2/y is not a polynomial in one variable.

(v) x10+y3+t50

Solution:

Here, in the equation x10+y3+t50

Though, the powers, 10, 3, 50, are whole numbers, there are 3 variables used in the expression

x10+y3+t50. Hence, it is not a polynomial in one variable.

2. Write the coefficients of x2 in each of the following:

(i) 2+x2+x

Solution:

The equation 2+x2+x can be written as 2+(1)x2+x

We know that, coefficient is the number which multiplies the variable.

Here, the number that multiplies the variable x2 is 1

, the coefficients of xin 2+x2+x is 1.

(ii) 2–x2+x3

Solution:

The equation 2–x2+xcan be written as 2+(–1)x2+x3

We know that, coefficient is the number (along with its sign, i.e., – or +) which multiplies the variable.

Here, the number that multiplies the variable x2 is -1

the coefficients of xin 2–x2+xis -1.

(iii) (/2)x2+x

Solution:

The equation (/2)x+x can be written as (/2)x2 + x

We know that, coefficient is the number (along with its sign, i.e., – or +) which multiplies the variable.

Here, the number that multiplies the variable x2 is /2.

the coefficients of xin (/2)x+x is /2.

(iii)√2x-1

Solution:

The equation √2x-1 can be written as 0x2+√2x-1 [Since 0x2 is 0]

We know that, coefficient is the number (along with its sign, i.e., – or +) which multiplies the variable.

Here, the number that multiplies the variable x2is 0

, the coefficients of xin √2x-1 is 0.

3. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Solution:

Binomial of degree 35: A polynomial having two terms and the highest degree 35 is called a binomial of degree 35

Eg.,  3x35+5

Monomial of degree 100: A polynomial having one term and the highest degree 100 is called a monomial of degree 100

Eg.,  4x100

4. Write the degree of each of the following polynomials:

(i) 5x3+4x2+7x

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, 5x3+4x2+7x = 5x3+4x2+7x1

The powers of the variable x are: 3, 2, 1

the degree of 5x3+4x2+7x is 3 as 3 is the highest power of x in the equation.

(ii) 4–y2

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, in 4–y2,

The power of the variable y is 2

the degree of 4–y2 is 2 as 2 is the highest power of y in the equation.

(iii) 5t–√7

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, in 5t–√7 ,

The power of the variable y is: 1

the degree of 5t–√7 is 1 as 1 is the highest power of y in the equation.

(iv) 3

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, 3 = 3×1 = 3× x0

The power of the variable here is: 0

the degree of 3 is 0.

5. Classify the following as linear, quadratic and cubic polynomials:

Solution:

We know that,

Linear polynomial: A polynomial of degree one is called a linear polynomial.

Quadratic polynomial: A polynomial of degree two is called a quadratic polynomial.

Cubic polynomial: A polynomial of degree three is called a cubic polynomial.

(i) x2+x

Solution:

The highest power of x2+x is 2

the degree is 2

Hence, x2+x is a quadratic polynomial

(ii) x–x3

Solution:

The highest power of x–xis 3

the degree is 3

Hence, x–x3 is a cubic polynomial

(iii) y+y2+4

Solution:

The highest power of y+y2+4 is 2

the degree is 2

Hence, y+y2+4is a quadratic polynomial

(iv) 1+x

Solution:

The highest power of 1+x is 1

the degree is 1

Hence, 1+x is a linear polynomial.

(v) 3t

Solution:

The highest power of 3t is 1

the degree is 1

Hence, 3t is a linear polynomial.

(vi) r2

Solution:

The highest power of ris 2

the degree is 2

Hence, r2is a quadratic polynomial.

(vii) 7x3

Solution:

The highest power of 7xis 3

the degree is 3

Hence, 7x3 is a cubic polynomial.


Exercise 2.2 Page: 34

1. Find the value of the polynomial (x)=5x−4x2+3 

(i) x = 0

(ii) x = – 1

(iii) x = 2

Solution:

Let f(x) = 5x−4x2+3

(i) When x = 0

f(0) = 5(0)-4(0)2+3

= 3

(ii) When x = -1

f(x) = 5x−4x2+3

f(−1) = 5(−1)−4(−1)2+3

= −5–4+3

= −6

(iii) When x = 2

f(x) = 5x−4x2+3

f(2) = 5(2)−4(2)2+3

= 10–16+3

= −3

2. Find p(0), p(1) and p(2) for each of the following polynomials:

(i) p(y)=y2−y+1

Solution:

p(y) = y2–y+1

∴p(0) = (0)2−(0)+1=1

p(1) = (1)2–(1)+1=1

p(2) = (2)2–(2)+1=3

(ii) p(t)=2+t+2t2−t3

Solution:

p(t) = 2+t+2t2−t3

∴p(0) = 2+0+2(0)2–(0)3=2

p(1) = 2+1+2(1)2–(1)3=2+1+2–1=4

p(2) = 2+2+2(2)2–(2)3=2+2+8–8=4

(iii) p(x)=x3

Solution:

p(x) = x3

∴p(0) = (0)= 0

p(1) = (1)= 1

p(2) = (2)= 8

(iv) P(x) = (x−1)(x+1)

Solution:

p(x) = (x–1)(x+1)

∴p(0) = (0–1)(0+1) = (−1)(1) = –1

p(1) = (1–1)(1+1) = 0(2) = 0

p(2) = (2–1)(2+1) = 1(3) = 3

3. Verify whether the following are zeroes of the polynomial, indicated against them.

(i) p(x)=3x+1, x=−1/3

Solution:

For, x = -1/3, p(x) = 3x+1

∴p(−1/3) = 3(-1/3)+1 = −1+1 = 0

∴ -1/3 is a zero of p(x).

(ii) p(x)=5x–Ï€, x = 4/5

Solution:

For, x = 4/5, p(x) = 5x–Ï€

∴ p(4/5) = 5(4/5)- = 4-

∴ 4/5 is not a zero of p(x).

(iii) p(x)=x2−1, x=1, −1

Solution:

For, x = 1, −1;

p(x) = x2−1

∴p(1)=12−1=1−1 = 0

p(−1)=(-1)2−1 = 1−1 = 0

∴1, −1 are zeros of p(x).

(iv) p(x) = (x+1)(x–2), x =−1, 2

Solution:

For, x = −1,2;

p(x) = (x+1)(x–2)

∴p(−1) = (−1+1)(−1–2)

= (0)(−3) = 0

p(2) = (2+1)(2–2) = (3)(0) = 0

∴−1,2 are zeros of p(x).

(v) p(x) = x2, x = 0

Solution:

For, x = 0 p(x) = x2

p(0) = 0= 0

∴ 0 is a zero of p(x).

(vi) p(x) = lx+m, x = −m/l

Solution:

For, x = -m/; p(x) = lx+m

∴ p(-m/l)l(-m/l)+m = −m+m = 0

∴-m/l is a zero of p(x).

(vii) p(x) = 3x2−1, x = -1/√3 , 2/√3

Solution:

For, x = -1/√3 , 2/√3 ; p(x) = 3x2−1

∴p(-1/√3) = 3(-1/√3)2-1 = 3(1/3)-1 = 1-1 = 0

∴p(2/√3 ) = 3(2/√3)2-1 = 3(4/3)-1 = 4−1=3 ≠ 0

∴-1/√3 is a zero of p(x) but 2/√3  is not a zero of p(x).

(viii) p(x) =2x+1, x = 1/2

Solution:

For, x = 1/2 p(x) = 2x+1

∴ p(1/2)=2(1/2)+1 = 1+1 = 2≠0

∴1/2 is not a zero of p(x).

4. Find the zero of the polynomials in each of the following cases:

(i) p(x) = x+5 

Solution:

p(x) = x+5

⇒ x+5 = 0

⇒ x = −5

∴ -5 is a zero polynomial of the polynomial p(x).

(ii) p(x) = x–5

Solution:

p(x) = x−5

⇒ x−5 = 0

⇒ x = 5

∴ 5 is a zero polynomial of the polynomial p(x).

(iii) p(x) = 2x+5

Solution:

p(x) = 2x+5

⇒ 2x+5 = 0

⇒ 2x = −5

⇒ x = -5/2

∴x = -5/2 is a zero polynomial of the polynomial p(x).

(iv) p(x) = 3x–2 

Solution:

p(x) = 3x–2

⇒ 3x−2 = 0

⇒ 3x = 2

⇒x = 2/3

∴x = 2/3  is a zero polynomial of the polynomial p(x).

(v) p(x) = 3x 

Solution:

p(x) = 3x

⇒ 3x = 0

⇒ x = 0

∴0 is a zero polynomial of the polynomial p(x).

(vi) p(x) = ax, a0

Solution:

p(x) = ax

⇒ ax = 0

⇒ x = 0

∴x = 0 is a zero polynomial of the polynomial p(x).

(vii)p(x) = cx+d, c ≠ 0, c, d are real numbers.

Solution:

p(x) = cx + d

⇒ cx+d =0

⇒ x = -d/c

∴ x = -d/c is a zero polynomial of the polynomial p(x).


Exercise 2.3 Page: 40

1. Find the remainder when x3+3x2+3x+1 is divided by

(i) x+1

Solution:

x+1= 0

⇒x = −1

∴Remainder:

p(−1) = (−1)3+3(−1)2+3(−1)+1

= −1+3−3+1

= 0

(ii) x−1/2

Solution:

x-1/2 = 0

⇒ x = 1/2

∴Remainder:

p(1/2) = (1/2)3+3(1/2)2+3(1/2)+1

= (1/8)+(3/4)+(3/2)+1

= 27/8

(iii) x

Solution:

x = 0

∴Remainder:

p(0) = (0)3+3(0)2+3(0)+1

= 1

(iv) x+Ï€

Solution:

x+Ï€ = 0

⇒ x = −Ï€

∴Remainder:

p(0) = (−Ï€)+3(−Ï€)2+3(−Ï€)+1

= −Ï€3+3Ï€2−3Ï€+1

(v) 5+2x

Solution:

5+2x=0

⇒ 2x = −5

⇒ x = -5/2

∴Remainder:

(-5/2)3+3(-5/2)2+3(-5/2)+1 = (-125/8)+(75/4)-(15/2)+1

= -27/8

2. Find the remainder when x3−ax2+6x−a is divided by x-a.

Solution:

Let p(x) = x3−ax2+6x−a

x−a = 0

∴x = a

Remainder:

p(a) = (a)3−a(a2)+6(a)−a

= a3−a3+6a−a = 5a

3. Check whether 7+3x is a factor of 3x3+7x.

Solution:

7+3x = 0

⇒ 3x = −7

⇒ x = -7/3

∴Remainder:

3(-7/3)3+7(-7/3) = -(343/9)+(-49/3)

= (-343-(49)3)/9

= (-343-147)/9

= -490/9 ≠ 0

∴7+3x is not a factor of 3x3+7x


Exercise 2.4 Page: 43

1. Determine which of the following polynomials has (x + 1) a factor:

(i) x3+x2+x+1

Solution:

Let p(x) = x3+x2+x+1

The zero of x+1 is -1. [x+1 = 0 means x = -1]

p(−1) = (−1)3+(−1)2+(−1)+1

= −1+1−1+1

= 0

∴By factor theorem, x+1 is a factor of x3+x2+x+1

(ii) x4+x3+x2+x+1

Solution:

Let p(x)= x4+x3+x2+x+1

The zero of x+1 is -1. . [x+1= 0 means x = -1]

p(−1) = (−1)4+(−1)3+(−1)2+(−1)+1

= 1−1+1−1+1

= 1 ≠ 0

∴By factor theorem, x+1 is not a factor of x4 + x3 + x2 + x + 1

(iii) x4+3x3+3x2+x+1 

Solution:

Let p(x)= x4+3x3+3x2+x+1

The zero of x+1 is -1.

p(−1)=(−1)4+3(−1)3+3(−1)2+(−1)+1

=1−3+3−1+1

=1 ≠ 0

∴By factor theorem, x+1 is not a factor of x4+3x3+3x2+x+1

(iv) x– x2– (2+√2)x +√2

Solution:

Let p(x) = x3–x2–(2+√2)x +√2

The zero of x+1 is -1.

p(−1) = (-1)3–(-1)2–(2+√2)(-1) + √2 = −1−1+2+√2+√2

= 2√2 ≠ 0

∴By factor theorem, x+1 is not a factor of x3–x2–(2+√2)x +√2

2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

(i) p(x) = 2x3+x2–2x–1, g(x) = x+1

Solution:

p(x) = 2x3+x2–2x–1, g(x) = x+1

g(x) = 0

⇒ x+1 = 0

⇒ x = −1

∴Zero of g(x) is -1.

Now,

p(−1) = 2(−1)3+(−1)2–2(−1)–1

= −2+1+2−1

= 0

∴By factor theorem, g(x) is a factor of p(x).

(ii) p(x)=x3+3x2+3x+1, g(x) = x+2

Solution:

p(x) = x3+3x2+3x+1, g(x) = x+2

g(x) = 0

⇒ x+2 = 0

⇒ x = −2

∴ Zero of g(x) is -2.

Now,

p(−2) = (−2)3+3(−2)2+3(−2)+1

= −8+12−6+1

= −1 ≠ 0

∴By factor theorem, g(x) is not a factor of p(x).

(iii) p(x)=x3–4x2+x+6, g(x) = x–3

Solution:

p(x) = x3–4x2+x+6, g(x) = x -3

g(x) = 0

⇒ x−3 = 0

⇒ x = 3

∴ Zero of g(x) is 3.

Now,

p(3) = (3)3−4(3)2+(3)+6

= 27−36+3+6

= 0

∴By factor theorem, g(x) is a factor of p(x).

3. Find the value of k, if x–1 is a factor of p(x) in each of the following cases:

(i) p(x) = x2+x+k

Solution:

If x-1 is a factor of p(x), then p(1) = 0

By Factor Theorem

⇒ (1)2+(1)+k = 0

⇒ 1+1+k = 0

⇒ 2+k = 0

⇒ k = −2

(ii) p(x) = 2x2+kx+√2

Solution:

If x-1 is a factor of p(x), then p(1)=0

⇒ 2(1)2+k(1)+√2 = 0

⇒ 2+k+√2 = 0

⇒ k = −(2+√2)

(iii) p(x) = kx22x+1

Solution:

If x-1 is a factor of p(x), then p(1)=0

By Factor Theorem

⇒ k(1)2-√2(1)+1=0

⇒ k = √2-1

(iv) p(x)=kx2–3x+k

Solution:

If x-1 is a factor of p(x), then p(1) = 0

By Factor Theorem

⇒ k(1)2–3(1)+k = 0

⇒ k−3+k = 0

⇒ 2k−3 = 0

⇒ k= 3/2

4. Factorize:

(i) 12x2–7x+1

Solution:

Using the splitting the middle term method,

We have to find a number whose sum = -7 and product =1×12 = 12

We get -3 and -4 as the numbers [-3+-4=-7 and -3×-4 = 12]

12x2–7x+1= 12x2-4x-3x+1

= 4x(3x-1)-1(3x-1)

= (4x-1)(3x-1)

(ii) 2x2+7x+3

Solution:

Using the splitting the middle term method,

We have to find a number whose sum = 7 and product = 2×3 = 6

We get 6 and 1 as the numbers [6+1 = 7 and 6×1 = 6]

2x2+7x+3 = 2x2+6x+1x+3

= 2x (x+3)+1(x+3)

= (2x+1)(x+3)

(iii) 6x2+5x-6 

Solution:

Using the splitting the middle term method,

We have to find a number whose sum = 5 and product = 6×-6 = -36

We get -4 and 9 as the numbers [-4+9 = 5 and -4×9 = -36]

6x2+5x-6 = 6x2+9x–4x–6

= 3x(2x+3)–2(2x+3)

= (2x+3)(3x–2)

(iv) 3x2–x–4 

Solution:

Using the splitting the middle term method,

We have to find a number whose sum = -1 and product = 3×-4 = -12

We get -4 and 3 as the numbers [-4+3 = -1 and -4×3 = -12]

3x2–x–4 = 3x2–x–4

= 3x2–4x+3x–4

= x(3x–4)+1(3x–4)

= (3x–4)(x+1)

5. Factorize:

(i) x3–2x2–x+2

Solution:

Let p(x) = x3–2x2–x+2

Factors of 2 are ±1 and ± 2

By trial method, we find that

p(1) = 0

So, (x+1) is factor of p(x)

Now,

p(x) = x3–2x2–x+2

p(−1) = (−1)3–2(−1)2–(−1)+2

= −1−1+1+2

= 0

Therefore, (x+1) is the factor of p(x)

Ncert solutions class 9 chapter 2-1

Now, Dividend = Divisor × Quotient + Remainder

(x+1)(x2–3x+2) = (x+1)(x2–x–2x+2)

= (x+1)(x(x−1)−2(x−1))

= (x+1)(x−1)(x+2)

(ii) x3–3x2–9x–5

Solution:

Let p(x) = x3–3x2–9x–5

Factors of 5 are ±1 and ±5

By trial method, we find that

p(5) = 0

So, (x-5) is factor of p(x)

Now,

p(x) = x3–3x2–9x–5

p(5) = (5)3–3(5)2–9(5)–5

= 125−75−45−5

= 0

Therefore, (x-5) is the factor of  p(x)

Ncert solutions class 9 chapter 2-2

Now, Dividend = Divisor × Quotient + Remainder

(x−5)(x2+2x+1) = (x−5)(x2+x+x+1)

= (x−5)(x(x+1)+1(x+1))

= (x−5)(x+1)(x+1)

(iii) x3+13x2+32x+20

Solution:

Let p(x) = x3+13x2+32x+20

Factors of 20 are ±1, ±2, ±4, ±5, ±10 and ±20

By trial method, we find that

p(-1) = 0

So, (x+1) is factor of p(x)

Now,

p(x)= x3+13x2+32x+20

p(-1) = (−1)3+13(−1)2+32(−1)+20

= −1+13−32+20

= 0

Therefore, (x+1) is the factor of p(x)

Ncert solutions class 9 chapter 2-3

Now, Dividend = Divisor × Quotient +Remainder

(x+1)(x2+12x+20) = (x+1)(x2+2x+10x+20)

= (x−5)x(x+2)+10(x+2)

= (x−5)(x+2)(x+10)

(iv) 2y3+y2–2y–1

Solution:

Let p(y) = 2y3+y2–2y–1

Factors = 2×(−1)= -2 are ±1 and ±2

By trial method, we find that

p(1) = 0

So, (y-1) is factor of p(y)

Now,

p(y) = 2y3+y2–2y–1

p(1) = 2(1)3+(1)2–2(1)–1

= 2+1−2

= 0

Therefore, (y-1) is the factor of p(y)

Ncert solutions class 9 chapter 2-4

Now, Dividend = Divisor × Quotient + Remainder

(y−1)(2y2+3y+1) = (y−1)(2y2+2y+y+1)

= (y−1)(2y(y+1)+1(y+1))

= (y−1)(2y+1)(y+1)

Exercise 2.5 Page: 48

1. Use suitable identities to find the following products:

(i) (x+4)(x +10) 

Solution:

Using the identity, (x+a)(x+b) = x 2+(a+b)x+ab

[Here, a = 4 and b = 10]

We get,

(x+4)(x+10) = x2+(4+10)x+(4×10)

= x2+14x+40

(ii) (x+8)(x –10)     

Solution:

Using the identity, (x+a)(x+b) = x 2+(a+b)x+ab

[Here, a = 8 and b = −10]

We get,

(x+8)(x−10) = x2+(8+(−10))x+(8×(−10))

= x2+(8−10)x–80

= x2−2x−80

(iii) (3x+4)(3x–5)

Solution:

Using the identity, (x+a)(x+b) = x 2+(a+b)x+ab

[Here, x = 3x, a = 4 and b = −5]

We get,

(3x+4)(3x−5) = (3x)2+4+(−5)3x+4×(−5)

= 9x2+3x(4–5)–20

= 9x2–3x–20

(iv) (y2+3/2)(y2-3/2)

Solution:

Using the identity, (x+y)(x–y) = x2–y 2

[Here, x = y2and y = 3/2]

We get,

(y2+3/2)(y2–3/2) = (y2)2–(3/2)2

= y4–9/4

2. Evaluate the following products without multiplying directly:

(i) 103×107

Solution:

103×107= (100+3)×(100+7)

Using identity, [(x+a)(x+b) = x2+(a+b)x+ab

Here, x = 100

a = 3

b = 7

We get, 103×107 = (100+3)×(100+7)

= (100)2+(3+7)100+(3×7))

= 10000+1000+21

= 11021

(ii) 95×96  

Solution:

95×96 = (100-5)×(100-4)

Using identity, [(x-a)(x-b) = x2-(a+b)x+ab

Here, x = 100

a = -5

b = -4

We get, 95×96 = (100-5)×(100-4)

= (100)2+100(-5+(-4))+(-5×-4)

= 10000-900+20

= 9120

(iii) 104×96

Solution:

104×96 = (100+4)×(100–4)

Using identity, [(a+b)(a-b)= a2-b2]

Here, a = 100

b = 4

We get, 104×96 = (100+4)×(100–4)

= (100)2–(4)2

= 10000–16

= 9984

3. Factorize the following using appropriate identities:

(i) 9x2+6xy+y2

Solution:

9x2+6xy+y= (3x)2+(2×3x×y)+y2

Using identity, x2+2xy+y= (x+y)2

Here, x = 3x

y = y

9x2+6xy+y= (3x)2+(2×3x×y)+y2

= (3x+y)2

= (3x+y)(3x+y)

(ii) 4y2−4y+1

Solution:

4y2−4y+1 = (2y)2–(2×2y×1)+12

Using identity, x2 – 2xy + y= (x – y)2

Here, x = 2y

y = 1

4y2−4y+1 = (2y)2–(2×2y×1)+12

= (2y–1)2

= (2y–1)(2y–1)

(iii)  x2–y2/100

Solution:

x2–y2/100 = x2–(y/10)2

Using identity, x2-y= (x-y)(x+y)

Here, x = x

y = y/10

x2–y2/100 = x2–(y/10)2

= (x–y/10)(x+y/10)

4. Expand each of the following, using suitable identities:

(i) (x+2y+4z)2

(ii) (2x−y+z)2

(iii) (−2x+3y+2z)2

(iv) (3a –7b–c)2

(v) (–2x+5y–3z)2

((1/4)a-(1/2)b +1)2

Solution:

(i) (x+2y+4z)2

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = x

y = 2y

z = 4z

(x+2y+4z)= x2+(2y)2+(4z)2+(2×x×2y)+(2×2y×4z)+(2×4z×x)

= x2+4y2+16z2+4xy+16yz+8xz

(ii) (2x−y+z)2 

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = 2x

y = −y

z = z

(2x−y+z)= (2x)2+(−y)2+z2+(2×2x×−y)+(2×−y×z)+(2×z×2x)

= 4x2+y2+z2–4xy–2yz+4xz

(iii) (−2x+3y+2z)2

Solution:

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = −2x

y = 3y

z = 2z

(−2x+3y+2z)= (−2x)2+(3y)2+(2z)2+(2×−2x×3y)+(2×3y×2z)+(2×2z×−2x)

= 4x2+9y2+4z2–12xy+12yz–8xz

(iv) (3a –7b–c)2

Solution:

Using identity (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = 3a

y = – 7b

z = – c

(3a –7b– c)= (3a)2+(– 7b)2+(– c)2+(2×3a ×– 7b)+(2×– 7b ×– c)+(2×– c ×3a)

= 9a2 + 49b+ c2– 42ab+14bc–6ca

(v) (–2x+5y–3z)2

Solution:

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = –2x

y = 5y

z = – 3z

(–2x+5y–3z)= (–2x)2+(5y)2+(–3z)2+(2×–2x × 5y)+(2× 5y×– 3z)+(2×–3z ×–2x)

= 4x2+25y+9z2– 20xy–30yz+12zx

(vi) ((1/4)a-(1/2)b+1)2

Solution:

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

Here, x = (1/4)a

y = (-1/2)b

z = 1

Ncert solutions class 9 chapter 2-5

5. Factorize:

(i) 4x2+9y2+16z2+12xy–24yz–16xz

(ii ) 2x2+y2+8z2–2√2xy+4√2yz–8xz

Solution:

(i) 4x2+9y2+16z2+12xy–24yz–16xz

Using identity, (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx

We can say that, x2+y2+z2+2xy+2yz+2zx = (x+y+z)2

4x2+9y2+16z2+12xy–24yz–16xz = (2x)2+(3y)2+(−4z)2+(2×2x×3y)+(2×3y×−4z)+(2×−4z×2x)

= (2x+3y–4z)2

= (2x+3y–4z)(2x+3y–4z)

(ii) 2x2+y2+8z2–2√2xy+4√2yz–8xz

Using identity, (x +y+z)2 = x2+y2+z2+2xy+2yz+2zx

We can say that, x2+y2+z2+2xy+2yz+2zx = (x+y+z)2

2x2+y2+8z2–2√2xy+4√2yz–8xz

= (-√2x)2+(y)2+(2√2z)2+(2×-√2x×y)+(2×y×2√2z)+(2×2√2×−√2x)

= (−√2x+y+2√2z)2

= (−√2x+y+2√2z)(−√2x+y+2√2z)

6. Write the following cubes in expanded form:

(i) (2x+1)3

(ii) (2a−3b)3

(iii) ((3/2)x+1)3

(iv) (x−(2/3)y)3

Solution:

(i) (2x+1)3

Using identity,(x+y)3 = x3+y3+3xy(x+y)

(2x+1)3= (2x)3+13+(3×2x×1)(2x+1)

= 8x3+1+6x(2x+1)

= 8x3+12x2+6x+1

(ii) (2a−3b)3

Using identity,(x–y)3 = x3–y3–3xy(x–y)

(2a−3b)= (2a)3−(3b)3–(3×2a×3b)(2a–3b)

= 8a3–27b3–18ab(2a–3b)

= 8a3–27b3–36a2b+54ab2

(iii) ((3/2)x+1)3

Using identity,(x+y)3 = x3+y3+3xy(x+y)

((3/2)x+1)3=((3/2)x)3+13+(3×(3/2)x×1)((3/2)x +1)

Ncert solutions class 9 chapter 2-6

(iv)  (x−(2/3)y)3

Using identity, (x –y)3 = x3–y3–3xy(x–y)

Ncert solutions class 9 chapter 2-7

7. Evaluate the following using suitable identities: 

(i) (99)3

(ii) (102)3

(iii) (998)3

Solutions:

(i) (99)3

Solution:

We can write 99 as 100–1

Using identity, (x –y)3 = x3–y3–3xy(x–y)

(99)= (100–1)3

= (100)3–13–(3×100×1)(100–1)

= 1000000 –1–300(100 – 1)

= 1000000–1–30000+300

= 970299

(ii) (102)3

Solution:

We can write 102 as 100+2

Using identity,(x+y)3 = x3+y3+3xy(x+y)

(100+2)=(100)3+23+(3×100×2)(100+2)

= 1000000 + 8 + 600(100 + 2)

= 1000000 + 8 + 60000 + 1200

= 1061208

(iii) (998)3

Solution:

We can write 99 as 1000–2

Using identity,(x–y)3 = x3–y3–3xy(x–y)

(998)=(1000–2)3

=(1000)3–23–(3×1000×2)(1000–2)

= 1000000000–8–6000(1000– 2)

= 1000000000–8- 6000000+12000

= 994011992

8. Factorise each of the following:

(i) 8a3+b3+12a2b+6ab2

(ii) 8a3–b3–12a2b+6ab2

(iii) 27–125a3–135a +225a2   

(iv) 64a3–27b3–144a2b+108ab2

(v) 27p3–(1/216)−(9/2) p2+(1/4)p

Solutions:

(i) 8a3+b3+12a2b+6ab2

Solution:

The expression, 8a3+b3+12a2b+6ab2 can be written as (2a)3+b3+3(2a)2b+3(2a)(b)2

8a3+b3+12a2b+6ab= (2a)3+b3+3(2a)2b+3(2a)(b)2

= (2a+b)3

= (2a+b)(2a+b)(2a+b)

Here, the identity, (x +y)3 = x3+y3+3xy(x+y) is used.

 

(ii) 8a3–b3–12a2b+6ab2

Solution:

The expression, 8a3–b3−12a2b+6ab2 can be written as (2a)3–b3–3(2a)2b+3(2a)(b)2

8a3–b3−12a2b+6ab= (2a)3–b3–3(2a)2b+3(2a)(b)2

= (2a–b)3

= (2a–b)(2a–b)(2a–b)

Here, the identity,(x–y)3 = x3–y3–3xy(x–y) is used.

 

(iii) 27–125a3–135a+225a2 

Solution:

The expression, 27–125a3–135a +225a2 can be written as 33–(5a)3–3(3)2(5a)+3(3)(5a)2

27–125a3–135a+225a=
33–(5a)3–3(3)2(5a)+3(3)(5a)2

= (3–5a)3

= (3–5a)(3–5a)(3–5a)

Here, the identity, (x–y)3 = x3–y3-3xy(x–y) is used.

(iv) 64a3–27b3–144a2b+108ab2

Solution:

The expression, 64a3–27b3–144a2b+108ab2can be written as (4a)3–(3b)3–3(4a)2(3b)+3(4a)(3b)2

64a3–27b3–144a2b+108ab2=
(4a)3–(3b)3–3(4a)2(3b)+3(4a)(3b)2

=(4a–3b)3

=(4a–3b)(4a–3b)(4a–3b)

Here, the identity, (x – y)3 = x3 – y3 – 3xy(x – y) is used.

(v) 7p3– (1/216)−(9/2) p2+(1/4)p

Solution:

The expression, 27p3–(1/216)−(9/2) p2+(1/4)p

can be written as (3p)3–(1/6)3–3(3p)2(1/6)+3(3p)(1/6)2

27p3–(1/216)−(9/2) p2+(1/4)p =
(3p)3–(1/6)3–3(3p)2(1/6)+3(3p)(1/6)2

= (3p–16)3

= (3p–16)(3p–16)(3p–16)

9. Verify:

(i) x3+y= (x+y)(x2–xy+y2)

(ii) x3–y= (x–y)(x2+xy+y2)

Solutions:

(i) x3+y= (x+y)(x2–xy+y2)

We know that, (x+y)3 = x3+y3+3xy(x+y)

⇒ x3+y= (x+y)3–3xy(x+y)

⇒ x3+y= (x+y)[(x+y)2–3xy]

Taking (x+y) common ⇒ x3+y= (x+y)[(x2+y2+2xy)–3xy]

⇒ x3+y= (x+y)(x2+y2–xy)

(ii) x3–y= (x–y)(x2+xy+y2

We know that,(x–y)3 = x3–y3–3xy(x–y)

⇒ x3−y= (x–y)3+3xy(x–y)

⇒ x3−y= (x–y)[(x–y)2+3xy]

Taking (x+y) common ⇒ x3−y= (x–y)[(x2+y2–2xy)+3xy]

⇒ x3+y= (x–y)(x2+y2+xy)

10. Factorize each of the following:

(i) 27y3+125z3

(ii) 64m3–343n3

Solutions:

(i) 27y3+125z3

The expression, 27y3+125zcan be written as (3y)3+(5z)3

27y3+125z= (3y)3+(5z)3

We know that, x3+y= (x+y)(x2–xy+y2)

27y3+125z= (3y)3+(5z)3

= (3y+5z)[(3y)2–(3y)(5z)+(5z)2]

= (3y+5z)(9y2–15yz+25z2)

(ii) 64m3–343n3

The expression, 64m3–343n3can be written as (4m)3–(7n)3

64m3–343n=
(4m)3–(7n)3

We know that, x3–y= (x–y)(x2+xy+y2)

64m3–343n= (4m)3–(7n)3

= (4m-7n)[(4m)2+(4m)(7n)+(7n)2]

= (4m-7n)(16m2+28mn+49n2)

11. Factorise: 27x3+y3+z3–9xyz 

Solution:

The expression27x3+y3+z3–9xyz can be written as (3x)3+y3+z3–3(3x)(y)(z)

27x3+y3+z3–9xyz  = (3x)3+y3+z3–3(3x)(y)(z)

We know that, x3+y3+z3–3xyz = (x+y+z)(x2+y2+z2–xy –yz–zx)

27x3+y3+z3–9xyz  = (3x)3+y3+z3–3(3x)(y)(z)

= (3x+y+z)(3x)2+y2+z2–3xy–yz–3xz

= (3x+y+z)(9x2+y2+z2–3xy–yz–3xz)

12. Verify that:

x3+y3+z3–3xyz = (1/2) (x+y+z)[(x–y)2+(y–z)2+(z–x)2]

Solution:

We know that,

x3+y3+z3−3xyz = (x+y+z)(x2+y2+z2–xy–yz–xz)

⇒ x3+y3+z3–3xyz = (1/2)(x+y+z)[2(x2+y2+z2–xy–yz–xz)]

= (1/2)(x+y+z)(2x2+2y2+2z2–2xy–2yz–2xz)

= (1/2)(x+y+z)[(x2+y2−2xy)+(y2+z2–2yz)+(x2+z2–2xz)]

= (1/2)(x+y+z)[(x–y)2+(y–z)2+(z–x)2]

13. If  x+y+z = 0, show that x3+y3+z= 3xyz.

Solution:

We know that,

x3+y3+z3-3xyz = (x +y+z)(x2+y2+z2–xy–yz–xz)

Now, according to the question, let (x+y+z) = 0,

then, x3+y3+z-3xyz = (0)(x2+y2+z2–xy–yz–xz)

⇒ x3+y3+z3–3xyz = 0

⇒ x3+y3+z= 3xyz

Hence Proved

14. Without actually calculating the cubes, find the value of each of the following:

(i) (−12)3+(7)3+(5)3

(ii) (28)3+(−15)3+(−13)3

Solution:

(i) (−12)3+(7)3+(5)3

Let a = −12

b = 7

c = 5

We know that if x+y+z = 0, then x3+y3+z3=3xyz.

Here, −12+7+5=0

(−12)3+(7)3+(5)= 3xyz

= 3×-12×7×5

= -1260

(ii) (28)3+(−15)3+(−13)3

Solution:

(28)3+(−15)3+(−13)3

Let a = 28

b = −15

c = −13

We know that if x+y+z = 0, then x3+y3+z= 3xyz.

Here, x+y+z = 28–15–13 = 0

(28)3+(−15)3+(−13)= 3xyz

= 0+3(28)(−15)(−13)

= 16380

15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: 

(i) Area : 25a2–35a+12

(ii) Area : 35y2+13y–12

Solution:

(i) Area : 25a2–35a+12

Using the splitting the middle term method,

We have to find a number whose sum = -35 and product =25×12=300

We get -15 and -20 as the numbers [-15+-20=-35 and -15×-20=300]

25a2–35a+12 = 25a2–15a−20a+12

= 5a(5a–3)–4(5a–3)

= (5a–4)(5a–3)

Possible expression for length  = 5a–4

Possible expression for breadth  = 5a –3

(ii) Area : 35y2+13y–12

Using the splitting the middle term method,

We have to find a number whose sum = 13 and product = 35×-12 = 420

We get -15 and 28 as the numbers [-15+28 = 13 and -15×28=420]

35y2+13y–12 = 35y2–15y+28y–12

= 5y(7y–3)+4(7y–3)

= (5y+4)(7y–3)

Possible expression for length  = (5y+4)

Possible expression for breadth  = (7y–3)

16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below? 

(i) Volume : 3x2–12x

(ii) Volume : 12ky2+8ky–20k

Solution:

(i) Volume : 3x2–12x

3x2–12x can be written as 3x(x–4) by taking 3x out of both the terms.

Possible expression for length = 3

Possible expression for breadth = x

Possible expression for height = (x–4)

(ii) Volume:
12ky2+8ky–20k

12ky2+8ky–20k can be written as 4k(3y2+2y–5) by taking 4k out of both the terms.

12ky2+8ky–20k = 4k(3y2+2y–5)

[Here, 3y2+2y–5 can be written as 3y2+5y–3y–5 using splitting the middle term method.]

= 4k(3y2+5y–3y–5)

= 4k[y(3y+5)–1(3y+5)]

= 4k(3y+5)(y–1)

Possible expression for length = 4k

Possible expression for breadth = (3y +5)

Possible expression for height = (y -1)